Recognizing indoor scenes
Indoor scene recognition is a challenging open problem in high level vision. Most scene recognition models that work well for outdoor scenes perform poorly in the indoor domain. The main difficulty is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properti...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 413 - 420 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Indoor scene recognition is a challenging open problem in high level vision. Most scene recognition models that work well for outdoor scenes perform poorly in the indoor domain. The main difficulty is that while some indoor scenes (e.g. corridors) can be well characterized by global spatial properties, others (e.g, bookstores) are better characterized by the objects they contain. More generally, to address the indoor scenes recognition problem we need a model that can exploit local and global discriminative information. In this paper we propose a prototype based model that can successfully combine both sources of information. To test our approach we created a dataset of 67 indoor scenes categories (the largest available) covering a wide range of domains. The results show that our approach can significantly outperform a state of the art classifier for the task. |
---|---|
ISBN: | 1424439922 9781424439928 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2009.5206537 |