Brain-Computer-Brain system for individualized transcranial alternating current stimulation with concurrent EEG recording: a healthy subject pilot study

In this study, we introduce a novel brain-computer-brain (BCB) system to investigate the aftereffects of individualized, task-dependent transcranial alternating current stimulation (tACS) delivered to the motor cortex. While previous studies utilized either a generic stimulation frequency or matched...

Full description

Saved in:
Bibliographic Details
Published in2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Vol. 2024; pp. 1 - 4
Main Authors Lim, Rosary Yuting, Jiang, Muyun, Ang, Kai Keng, Lin, Xiaohao, Guan, Cuntai
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, we introduce a novel brain-computer-brain (BCB) system to investigate the aftereffects of individualized, task-dependent transcranial alternating current stimulation (tACS) delivered to the motor cortex. While previous studies utilized either a generic stimulation frequency or matched it to an individual's resting frequency (e.g. individual alpha frequency, iAF), our study employed a trial-by-trial tACS stimulation design wherein the stimulation frequency delivered matches the individual's peak motor imagery (MI) performance frequency. 14 healthy subjects participated in both tACS and tACS-sham on separate days in a within-subject, randomized controlled design. We found that active tACS delivered to subjects receiving alpha (α)-tACS resulted in a decline in MI performance while that with tACS-sham did not differ significantly from baseline. However, subjects receiving beta (β)-tACS showed no significant difference in effect for both active tACS and tACS-sham conditions. These findings indirectly corroborated with that from literature advocating the notion of α tACS as functionally inhibitory; hence the consequential deterioration of MI performance observed only in α-tACS subjects. A more conclusive analysis will be conducted once more data is collected from this ongoing study.Clinical Relevance: The results gathered suggest the differential functional significance of α- and β-tACS in an individualized MI task-specific tACS delivery to the motor cortex with concurrent EEG recording. Although insignificant at the point of data analysis where sample size is small in this ongoing study, tACS-sham (30 Hz) seemed to potentially modulate neural oscillations in the direction of improving MI performance. These findings can inform future tACS study designs based on a system with personalized stimulation delivery for MI task investigations within laboratory and clinical settings - potentially beneficial towards upper limb stroke rehabilitation.
ISSN:2694-0604
DOI:10.1109/EMBC53108.2024.10782251