Hydrogen Bonds in Cellulose and Cellulose Derivatives

The native biopolymer assembly has been shown to be a complex process involving two separate but integrated steps of polymerization and crystallization [1,2]. In particular, cellulose has shown to be assembled by a macromolecular complex of enzymes located on the cell surface. Nature has designed an...

Full description

Saved in:
Bibliographic Details
Published inPolysaccharides pp. 89 - 118
Format Book Chapter
LanguageEnglish
Published United Kingdom CRC Press 2004
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The native biopolymer assembly has been shown to be a complex process involving two separate but integrated steps of polymerization and crystallization [1,2]. In particular, cellulose has shown to be assembled by a macromolecular complex of enzymes located on the cell surface. Nature has designed an efficient system for regulating the molecular weight, crystallinity, size, and shape of the nanostructure of cellulose (called cellulose microfibrils). Then the microfibrils are self-assembled to form cell walls maintaining tree-frame structure. In this manner, cellulose molecules biosynthesized at angstrom scale assemble to be microfibrils at nanoscale, and the microfibrils assemble to be cell walls at micronscale, then they scale up with growing (Fig. 1). Hydrogen bonds are no doubt a major interaction to stabilize this hierarchical architecture of higher plants. Therefore considering hydrogen bonds of cellulose requires in your mind a picture of the size (angstrom, nano, or micron) of the subject that you are looking at.
ISBN:9780824754808
0824754808
DOI:10.1201/9781420030822-7