A Compact Array Transducer for Full Calibration of Underwater Acoustic Detection Neutrino Telescopes
KM3NeT, the underwater neutrino telescope in the Mediterranean Sea, is a detector under construction. KM3NeT uses Digital Optical Modules (DOMs) to detect neutrinos but there will be a study about the viability to acoustic detection of neutrinos using mainly the acoustic sensors the telescope has fo...
Saved in:
Published in | 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS) pp. 591 - 595 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | KM3NeT, the underwater neutrino telescope in the Mediterranean Sea, is a detector under construction. KM3NeT uses Digital Optical Modules (DOMs) to detect neutrinos but there will be a study about the viability to acoustic detection of neutrinos using mainly the acoustic sensors the telescope has for positioning purposes. For this, it is necessary to calibrate and test the acoustic response of the receivers in the detector to determine the sensitivity to detect the neutrino acoustic signal and discriminate it from the environmental background. In this work, the strategy for the calibration of the sensor system using a compact array using three steps (frequency, directivity and neutrino signal-like) is described. Moreover, some R & D activities and results about the second step (long parametric directive signals) are shown. |
---|---|
DOI: | 10.1109/IOTSMS48152.2019.8939244 |