A cost analysis of very large scale PV (VLS-PV) system on the world deserts
To preserve the Earth, a 100 MW very large-scale photovoltaic power generation (VLS-PV) system is estimated assuming that it is installed on the world deserts, which are Sahara, Negev, Thar, Sonora, Great Sandy and Gobi desert. These deserts are good for installing the system because of large solar...
Saved in:
Published in | Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002 pp. 1672 - 1675 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
Piscataway NJ
IEEE
2002
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To preserve the Earth, a 100 MW very large-scale photovoltaic power generation (VLS-PV) system is estimated assuming that it is installed on the world deserts, which are Sahara, Negev, Thar, Sonora, Great Sandy and Gobi desert. These deserts are good for installing the system because of large solar irradiation and large land area. A PV array is dimensioned in detail in terms of array layout, support, foundation, wiring and so on. Then generation cost of the system is estimated based on the methodology of life-cycle cost (LCC). As a result of the estimation, the generation cost is calculated as 5.3 cent/kWh on Sahara desert, 6.4 cent/kWh on Gobi desert assuming PV module price of 1.0/W, system lifetime of 30 years and interest rate of 3%. These results suggest that VLS-PV systems are economically feasible on sufficient irradiation site even if existing PV system technologies are applied, when PV module price will decrease to a level of 1.0/W. |
---|---|
ISBN: | 9780780374713 0780374711 |
ISSN: | 1060-8371 |
DOI: | 10.1109/PVSC.2002.1190939 |