Longitudinal Model Predictive Control with comfortable speed planner
Guaranteeing simplicity and safety is a real challenge of Advanced Driver Assistance Systems (ADAS), being these aspects necessary for the development of decision and control stages in highly automated vehicles. Considering that a human-centered design is generally pursued, exploring comfort boundar...
Saved in:
Published in | 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) pp. 60 - 64 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2018
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICARSC.2018.8374161 |
Cover
Loading…
Summary: | Guaranteeing simplicity and safety is a real challenge of Advanced Driver Assistance Systems (ADAS), being these aspects necessary for the development of decision and control stages in highly automated vehicles. Considering that a human-centered design is generally pursued, exploring comfort boundaries in passenger vehicles has a significant importance. This work aims to implement a simple Model Predictive Control (MPC) for longitudinal maneuvers, considering a bare speed planner based on the curvature of a predefined geometrical path. The speed profiles are constrained with a maximum value at any time, in such way that total accelerations are lower than specified constraint limits. A double proportional with curvature bias control was employed as a simple algorithm for lateral maneuvers. The tests were performed within a realistic simulation environment with a virtual vehicle model based on a multi-body formulation. The results of this investigation permits to determine the capabilities of simplified control algorithms in real scenarios, and comprehend how to improve them to be more efficient. |
---|---|
DOI: | 10.1109/ICARSC.2018.8374161 |