Graph Convolutional Networks With Autoencoder-Based Compression And Multi-Layer Graph Learning
This work aims to propose a novel architecture and training strategy for graph convolutional networks (GCN). The proposed architecture, named Autoencoder-Aided GCN (AA-GCN), compresses the convolutional features in an information-rich embedding at multiple hidden layers, exploiting the presence of a...
Saved in:
Published in | ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 3593 - 3597 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
23.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This work aims to propose a novel architecture and training strategy for graph convolutional networks (GCN). The proposed architecture, named Autoencoder-Aided GCN (AA-GCN), compresses the convolutional features in an information-rich embedding at multiple hidden layers, exploiting the presence of autoencoders before the point-wise nonlinearities. Then, we propose a novel end-to-end training procedure that learns different graph representations per layer, jointly with the GCN weights and auto-encoder parameters. As a result, the proposed strategy improves the computational scalability of the GCN, learning the best graph representations at each layer in a data-driven fashion. Several numerical results on synthetic and real data illustrate how our architecture and training procedure compares favorably with other state-of-the-art solutions, both in terms of robustness and learning performance. |
---|---|
ISSN: | 2379-190X |
DOI: | 10.1109/ICASSP43922.2022.9746161 |