Digital Image Restoration in Matlab: A Case Study on Inverse and Wiener Filtering
In this paper, at first, a color image of a car is taken. Then the image is transformed into a grayscale image. After that, the motion blurring effect is applied to that image according to the image degradation model described in equation 3. The blurring effect can be controlled by a and b component...
Saved in:
Published in | 2018 International Conference on Innovation in Engineering and Technology (ICIET) pp. 1 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, at first, a color image of a car is taken. Then the image is transformed into a grayscale image. After that, the motion blurring effect is applied to that image according to the image degradation model described in equation 3. The blurring effect can be controlled by a and b components of the model. Then random noise is added in the image via Matlab programming. Many methods can restore the noisy and motion blurred image; particularly in this paper Inverse filtering as well as Wiener filtering are implemented for the restoration purpose. Consequently, both motion blurred and noisy motion blurred images are restored via Inverse filtering as well as Wiener filtering techniques and the comparison is made among them. |
---|---|
DOI: | 10.1109/CIET.2018.8660797 |