Epidural ECoG Online Decoding of Arm Movement Intention in Hemiparesis
Brain-Computer Interfaces (BCI) that rely upon epidural electrocorticographic signals may become a promising tool for neurorehabilitation of patients with severe hemiparatic syndromes due to cerebrovascular, traumatic or tumor-related brain damage. Here, we show in a patient-based feasibility study...
Saved in:
Published in | 2010 First Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging pp. 36 - 39 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Brain-Computer Interfaces (BCI) that rely upon epidural electrocorticographic signals may become a promising tool for neurorehabilitation of patients with severe hemiparatic syndromes due to cerebrovascular, traumatic or tumor-related brain damage. Here, we show in a patient-based feasibility study that online classification of arm movement intention is possible. The intention to move or to rest can be identified with high accuracy (~90 %), which is sufficient for BCI-guided neurorehabilitation. The observed spatial distribution of relevant features on the motor cortex indicates that cortical reorganization has been induced by the brain lesion. Low- and high-frequency components of the electrocorticographic power spectrum provide complementary information towards classification of arm movement intention. |
---|---|
ISBN: | 9781424484867 1424484863 |
DOI: | 10.1109/WBD.2010.17 |