100+ Times Faster Weighted Median Filter (WMF)

Weighted median, in the form of either solver or filter, has been employed in a wide range of computer vision solutions for its beneficial properties in sparsity representation. But it is hard to be accelerated due to the spatially varying weight and the median property. We propose a few efficient s...

Full description

Saved in:
Bibliographic Details
Published in2014 IEEE Conference on Computer Vision and Pattern Recognition pp. 2830 - 2837
Main Authors Zhang, Qi, Xu, Li, Jia, Jiaya
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.06.2014
Subjects
Online AccessGet full text
ISSN1063-6919
1063-6919
2575-7075
DOI10.1109/CVPR.2014.362

Cover

Loading…
More Information
Summary:Weighted median, in the form of either solver or filter, has been employed in a wide range of computer vision solutions for its beneficial properties in sparsity representation. But it is hard to be accelerated due to the spatially varying weight and the median property. We propose a few efficient schemes to reduce computation complexity from O(r2) to O(r) where r is the kernel size. Our contribution is on a new joint-histogram representation, median tracking, and a new data structure that enables fast data access. The effectiveness of these schemes is demonstrated on optical flow estimation, stereo matching, structure-texture separation, image filtering, to name a few. The running time is largely shortened from several minutes to less than 1 second. The source code is provided in the project website.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
ISSN:1063-6919
1063-6919
2575-7075
DOI:10.1109/CVPR.2014.362