Protective networks for high voltage power supplies for pulsed power loads

We are reporting on a comprehensive study on protective de-coupling networks for High Voltage (HV) pulsed power charging supplies. Typically HV power supplies charge large capacitor banks [1, page 3], [2, page 4], which are rapidly discharged into a pulsed power load. Even during a normal discharge,...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Pulsed Power Conference (PPC) pp. 1 - 6
Main Authors Giesselmann, Michael G., Bilbao, Argenis
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We are reporting on a comprehensive study on protective de-coupling networks for High Voltage (HV) pulsed power charging supplies. Typically HV power supplies charge large capacitor banks [1, page 3], [2, page 4], which are rapidly discharged into a pulsed power load. Even during a normal discharge, this can put severe stress on the power supply if it is not properly decoupled from the load. A fault at the load capacitor such as a flashover resulting in a ringing discharge with voltage reversal would put even more stress on the power supply, since the load capacitor could discharge through the rectifier diodes in forward direction. In such a case the output rectifier of the power supply could be instantaneously destroyed. Protective networks between the power supply and the load can prevent such damage but may limit the efficiency as well as the available power output and rep-rate of the HV power supply. We are reporting on a number of protective networks including combinations of resistors, inductors, and diodes that can be placed between the output of the power supply and the load. We are also considering the effects of parasitics and the surge I 2 t action integral [3, Page 20] of the output rectifiers of the power supply to arrive at guidelines for optimal system protection.
ISSN:2158-4915
2158-4923
DOI:10.1109/PPC.2015.7297019