Expectation-Propagation with Low-Rank Constraints for Linear Inverse Problems
In this work, we address the problem of scalable approximate inference and covariance estimation for linear inverse problems using Expectation-Propagation (EP). Traditional EP methods rely on Gaussian approximations with either diagonal or full covariance structures. Full covariance matrices can cap...
Saved in:
Published in | 2023 31st European Signal Processing Conference (EUSIPCO) pp. 1828 - 1832 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
EURASIP
04.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, we address the problem of scalable approximate inference and covariance estimation for linear inverse problems using Expectation-Propagation (EP). Traditional EP methods rely on Gaussian approximations with either diagonal or full covariance structures. Full covariance matrices can capture correlation but do not scale as the dimensions of the problem increases, while diagonal matrices scale better but omit potentially important correlations. For the first time to the best of our knowledge, we propose to investigate low-rank decompositions within EP for linear regression. The potential benefits of such covariance structures are illustrated thorough simulations results obtained on sparse linear regression problems and a more challenging spectral unmixing problem where the sparse mixing coefficients are, in addition, subject to positivity constraints. |
---|---|
ISSN: | 2076-1465 |
DOI: | 10.23919/EUSIPCO58844.2023.10289976 |