PhishGuard: A Convolutional Neural Network-Based Model for Detecting Phishing URLs with Explainability Analysis
Abstract-Cybersecurity is one of the global issues because of the extensive dependence on cyber systems of individuals, industries, and organizations. Among the cyber attacks, phishing is increasing tremendously and affecting the global economy. Therefore, this phenomenon highlights the vital need f...
Saved in:
Published in | 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) pp. 1 - 6 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.05.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/AIIoT58432.2024.10574688 |
Cover
Summary: | Abstract-Cybersecurity is one of the global issues because of the extensive dependence on cyber systems of individuals, industries, and organizations. Among the cyber attacks, phishing is increasing tremendously and affecting the global economy. Therefore, this phenomenon highlights the vital need for enhancing user awareness and robust support at both individual and organizational levels. Phishing URL identification is the best way to address the problem. Various machine learning and deep learning methods have been proposed to automate the detection of phishing URLs. However, these approaches often need more convincing accuracy and rely on datasets consisting of limited samples. Furthermore, these black-box intelligent models' decision to detect Suspicious URLs needs proper explanation to understand the features affecting the output. To address the issues, we propose a 1 D Convolutional Neural Network (CNN) and trained the model with extensive features and a substantial amount of data. The proposed model outperforms existing works by attaining an accuracy of 99.85 %. Additionally, our explainability analysis highlights certain features that significantly contribute to identifying the phishing URL. |
---|---|
DOI: | 10.1109/AIIoT58432.2024.10574688 |