Reserve capacity prediction of electric vehicles for ancillary service market participation
Electric vehicle (EV) is a kind of operation resource with great potential value. In order to describing the reserve capacity of EV clusters, it is necessary to accurately predict its reserve capacity so as to participate in the ancillary service market more effectively. In this paper, Firstly, the...
Saved in:
Published in | 2021 IEEE 2nd China International Youth Conference on Electrical Engineering (CIYCEE) pp. 1 - 7 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
15.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Electric vehicle (EV) is a kind of operation resource with great potential value. In order to describing the reserve capacity of EV clusters, it is necessary to accurately predict its reserve capacity so as to participate in the ancillary service market more effectively. In this paper, Firstly, the machine learning method of long short-term memory (LSTM) recursive neural network is used to predict the EV behavior information in the future period with historical data. Secondly, the fuzzy neural network is used to predict the willingness of EVs to participate in centralized regulation by aggregators (AGG). Finally, the prediction results of the reserve capacity of EV clusters are analyzed through a simulation example, and compared with the real data, the basic error is controlled within 2%. This paper provides a useful reference for EVs to participate in the ancillary service market to provide reserve capacity. |
---|---|
DOI: | 10.1109/CIYCEE53554.2021.9676780 |