An Intelligent Energy Management System with an Efficient IoT based Deep Learning Framework
Efficient and economical energy utilization is ensured using green energy management systems that currently exist. However, integration of this technology with the Internet of Things (IoT) and edge intelligence is not completely explored. A smart energy management system with a deep learning framewo...
Saved in:
Published in | 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) pp. 33 - 37 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
07.04.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICSCDS53736.2022.9760757 |
Cover
Loading…
Summary: | Efficient and economical energy utilization is ensured using green energy management systems that currently exist. However, integration of this technology with the Internet of Things (IoT) and edge intelligence is not completely explored. A smart energy management system with a deep learning framework is presented in this paper to address the requirements of energy management in smart industries, homes and grids. An efficient communication is established between the consumers and energy distributors while predicting the future energy consumptions over short time intervals. With least error rate and reduced time complexity, a smart energy management system with optimal normalization model selection and cloud-based data supervising server for energy forecasting in IoT and edge devices is introduced. Communication between the smart grids and the edge devices in the IoT networks connected to a common cloud server regarding efficient energy demand and response features occur in a secure and continuous manner. Short-term energy requirement forecasting is performed with an efficient decision making algorithm while using various preprocessing techniques to manage the electricity data which is of diverse nature. This model is implemented in resource constrained devices and shows promising outcomes. For commercial and residential datasets, the proposed system offers reduced mean-square error (MSE) and root MSE (RMSE) values. |
---|---|
DOI: | 10.1109/ICSCDS53736.2022.9760757 |