An Efficient Algorithm for Mining High Utility Quantitative Itemsets
Mining high utility quantitative itemsets (HUQIs) is now a novel research topic in data mining field, which consists of discovering sets of items having a high utility (e.g. high profit) and providing information about quantities of items in each itemset. In market analysis, it could supply for deci...
Saved in:
Published in | 2019 International Conference on Data Mining Workshops (ICDMW) pp. 1005 - 1012 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mining high utility quantitative itemsets (HUQIs) is now a novel research topic in data mining field, which consists of discovering sets of items having a high utility (e.g. high profit) and providing information about quantities of items in each itemset. In market analysis, it could supply for decision-makers that shopping behavior could bring high profit to the company. For example, the customers purchase M to N units of a product A and purchase P to Q units of a product B at the same time. However, mining HUQIs using existing algorithms remains very computationally expensive and makes the results hard to be utilized by users. In view of this, we propose a novel algorithm named HUQI-Miner (High Utility Quantitative Itemsets Miner) for efficiently mining HUQIs in databases. Experimental results on both real and synthetic datasets show that HUQI-Miner outperforms the state-of-the-art algorithms in terms of both execution time and memory usage. |
---|---|
ISSN: | 2375-9259 |
DOI: | 10.1109/ICDMW.2019.00145 |