Enhancing β-Ga2O3 Schottky Barrier Diodes' Performance Through Low-Temperature Post-Annealing: Achieving Optimal Forward Current-Voltage Characteristics

In this article, we present a low-temperature post-annealing (LTPA) technique to achieve ideal forward current-voltage (I−V) characteristics for <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\beta } </tex-math></inline-formula>-gallium oxide (<inline-f...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 71; no. 9; pp. 5552 - 5558
Main Authors Yu, Chunxiao, Hu, Haodong, Wang, Yibo, Jia, Xiaole, Huang, Shuqi, Luo, Zhengdong, Li, Bochang, Fang, Cizhe, Li, Xiaoxi, Liu, Yan, Hao, Yue, Han, Genquan
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we present a low-temperature post-annealing (LTPA) technique to achieve ideal forward current-voltage (I−V) characteristics for <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\beta } </tex-math></inline-formula>-gallium oxide (<inline-formula> <tex-math notation="LaTeX">\boldsymbol {\beta } </tex-math></inline-formula>-Ga2O3) Schottky barrier diodes (SBDs). The Ni/Au//<inline-formula> <tex-math notation="LaTeX">\boldsymbol {\beta } </tex-math></inline-formula>-Ga2O3 SBD underwent LTPA at 350 °C, achieving an ideal n factor of 1.00 and an average SS of 61 mV/decade as forward current varying in the four orders of magnitude range. This improvement is attributed to the compensation of the interface donor-like states through the LTPA process, leading to a significant decrease in the interface state density (Nss). In addition, the <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\beta } </tex-math></inline-formula>-Ga2O3 SBD with LTPA exhibited an enhancement in breakdown voltage (<inline-formula> <tex-math notation="LaTeX">{V}_{\text {br}} </tex-math></inline-formula>) compared to the control device (without LTPA) due to the improved interface quality. Overall, these findings demonstrate the potential of LTPA as a promising technique for engineering the Schottky interface of <inline-formula> <tex-math notation="LaTeX">\boldsymbol {\beta } </tex-math></inline-formula>-Ga2O3 SBDs.
ISSN:0018-9383
DOI:10.1109/TED.2024.3413029