Maskmark: Robust Neuralwatermarking for Real and Synthetic Speech
High-quality speech synthesis models may be used to spread misinformation or impersonate voices. Audio watermarking can combat misuse by embedding a traceable signature in generated audio. However, existing audio watermarks typically demonstrate robustness to only a small set of transformations of t...
Saved in:
Published in | Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 4650 - 4654 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-quality speech synthesis models may be used to spread misinformation or impersonate voices. Audio watermarking can combat misuse by embedding a traceable signature in generated audio. However, existing audio watermarks typically demonstrate robustness to only a small set of transformations of the watermarked audio. To address this, we propose MaskMark, a neural network-based digital audio watermarking technique optimized for speech. MaskMark embeds a secret key vector in audio via a multiplicative spectrogram mask, allowing the detection of watermarked speech segments even under substantial signal-processing or neural network-based transformations. Comparisons to a state-of-the-art baseline on natural and synthetic speech corpora and a human subjects evaluation demonstrate MaskMark's superior robustness in detecting watermarked speech while maintaining high perceptual transparency. |
---|---|
ISSN: | 2379-190X |
DOI: | 10.1109/ICASSP48485.2024.10447253 |