SIFT-Rank: Ordinal description for invariant feature correspondence
This paper investigates ordinal image description for invariant feature correspondence. Ordinal description is a meta-technique which considers image measurements in terms of their ranks in a sorted array, instead of the measurement values themselves. Rank-ordering normalizes descriptors in a manner...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 172 - 177 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper investigates ordinal image description for invariant feature correspondence. Ordinal description is a meta-technique which considers image measurements in terms of their ranks in a sorted array, instead of the measurement values themselves. Rank-ordering normalizes descriptors in a manner invariant under monotonic deformations of the underlying image measurements, and therefore serves as a simple, non-parametric substitute for ad hoc scaling and thresholding techniques currently used. Ordinal description is particularly well-suited for invariant features, as the high dimensionality of state-of-the-art descriptors permits a large number of unique rank-orderings, and the computationally complex step of sorting is only required once after geometrical normalization. Correspondence trials based on a benchmark data set show that in general, rank-ordered SIFT (SIFT-rank) descriptors outperform other state-of-the-art descriptors in terms of precision-recall, including standard SIFT and GLOH. |
---|---|
ISBN: | 1424439922 9781424439928 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2009.5206849 |