Learning real-time MRF inference for image denoising

Many computer vision problems can be formulated in a Bayesian framework with Markov Random Field (MRF) or Conditional Random Field (CRF) priors. Usually, the model assumes that a full Maximum A Posteriori (MAP) estimation will be performed for inference, which can be really slow in practice. In this...

Full description

Saved in:
Bibliographic Details
Published in2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 1574 - 1581
Main Author Barbu, Adrian
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many computer vision problems can be formulated in a Bayesian framework with Markov Random Field (MRF) or Conditional Random Field (CRF) priors. Usually, the model assumes that a full Maximum A Posteriori (MAP) estimation will be performed for inference, which can be really slow in practice. In this paper, we argue that through appropriate training, a MRF/CRF model can be trained to perform very well on a suboptimal inference algorithm. The model is trained together with a fast inference algorithm through an optimization of a loss function on a training set containing pairs of input images and desired outputs. A validation set can be used in this approach to estimate the generalization performance of the trained system. We apply the proposed method to an image denoising application, training a Fields of Experts MRF together with a 1-4 iteration gradient descent inference algorithm. Experimental validation on unseen data shows that the proposed training approach obtains an improved benchmark performance as well as a 1000-3000 times speedup compared to the Fields of Experts MRF trained with contrastive divergence. Using the new approach, image denoising can be performed in real-time, at 8 fps on a single CPU for a 256 × 256 image sequence, with close to state-of-the-art accuracy.
ISBN:1424439922
9781424439928
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2009.5206811