A BCS-based approach for the synthesis of conformal arrays
An innovative conformal array synthesis approach is proposed which exploits a generalization of the Bayesian Compressive Sampling (BCS) technique. Towards this end, the design problem is mathematically formulated in terms of a Bayesian learning one with sparseness priors. The arising functional is t...
Saved in:
Published in | 2013 7th European Conference on Antennas and Propagation (EuCAP) pp. 1084 - 1086 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An innovative conformal array synthesis approach is proposed which exploits a generalization of the Bayesian Compressive Sampling (BCS) technique. Towards this end, the design problem is mathematically formulated in terms of a Bayesian learning one with sparseness priors. The arising functional is then solved by means of a suitable Relevance Vector Machine (RVM) technique. Numerical results are reported to assess the effectiveness of the proposed approach in the synthesis of conformal sparse arrays. |
---|---|
ISBN: | 1467321877 9781467321877 |