Bundling features for large scale partial-duplicate web image search
In state-of-the-art image retrieval systems, an image is represented by a bag of visual words obtained by quantizing high-dimensional local image descriptors, and scalable schemes inspired by text retrieval are then applied for large scale image indexing and retrieval. Bag-of-words representations,...
Saved in:
Published in | 2009 IEEE Conference on Computer Vision and Pattern Recognition pp. 25 - 32 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In state-of-the-art image retrieval systems, an image is represented by a bag of visual words obtained by quantizing high-dimensional local image descriptors, and scalable schemes inspired by text retrieval are then applied for large scale image indexing and retrieval. Bag-of-words representations, however: 1) reduce the discriminative power of image features due to feature quantization; and 2) ignore geometric relationships among visual words. Exploiting such geometric constraints, by estimating a 2D affine transformation between a query image and each candidate image, has been shown to greatly improve retrieval precision but at high computational cost. In this paper we present a novel scheme where image features are bundled into local groups. Each group of bundled features becomes much more discriminative than a single feature, and within each group simple and robust geometric constraints can be efficiently enforced. Experiments in Web image search, with a database of more than one million images, show that our scheme achieves a 49% improvement in average precision over the baseline bag-of-words approach. Retrieval performance is comparable to existing full geometric verification approaches while being much less computationally expensive. When combined with full geometric verification we achieve a 77% precision improvement over the baseline bag-of-words approach, and a 24% improvement over full geometric verification alone. |
---|---|
ISBN: | 1424439922 9781424439928 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2009.5206566 |