In Vivo Characterization of the Mitochondrial Selective KATP Opener (3R)-trans-4-((4-Chlorophenyl)-N-(1H-imidazol-2-ylmethyl)dimethyl-2H-1-benzopyran-6-carbonitril Monohydrochloride (BMS-191095): Cardioprotective, Hemodynamic, and Electrophysiological Effects

Recent studies have shown the importance of mitochondrial ATP-sensitive potassium channels (K ATP ) in cardioprotection, and studies in vitro have shown that the benzopyran analog (3 R )- trans - 4-((4-chlorophenyl)- N -(1 H -imidazol-2-ylmethyl)dimethyl-2 H -1-benzopyran-6-carbonitril monohydrochlo...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 303; no. 1; p. 132
Main Authors Gary J. Grover, Albert J. D'Alonzo, Raymond B. Darbenzio, Charles S. Parham, Thomas A. Hess, Mohinder S. Bathala
Format Journal Article
LanguageEnglish
Published American Society for Pharmacology and Experimental Therapeutics 01.10.2002
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies have shown the importance of mitochondrial ATP-sensitive potassium channels (K ATP ) in cardioprotection, and studies in vitro have shown that the benzopyran analog (3 R )- trans - 4-((4-chlorophenyl)- N -(1 H -imidazol-2-ylmethyl)dimethyl-2 H -1-benzopyran-6-carbonitril monohydrochloride (BMS-191095) is a selective mitochondrial K ATP opener with cardioprotective activity. The goal of this study was to show selective cardioprotection for BMS-191095 in vivo without hemodynamic or cardiac electrophysiological effects expected for nonselective K ATP openers. BMS-191095 reduced infarct size in anesthetized dogs (90-min ischemia + 5-h reperfusion) in a dose-dependent manner (ED 25 = 0.4 mg/kg i.v.) with efficacious plasma concentrations of 0.3 to 1.0 μM, which were consistent with potency in vitro. None of the doses of BMS-191095 tested caused any effect on peripheral or coronary hemodynamic status. Further studies in dogs showed no effects of BMS-191095 on cardiac conduction or action potential configuration within the cardioprotective dose range. In a programmed electrical stimulation model, BMS-191095 showed no proarrhythmic effects, which is consistent with its lack of effects on cardiac electrophysiological status. BMS-191095 is a potent and efficacious cardioprotectant that is devoid of hemodynamic and cardiac electrophysiological side effects of first generation K ATP openers, which open both sarcolemmal and mitochondrial K ATP . Selective opening or activation of mitochondrial K ATP seems to be a potentially effective strategy for developing well tolerated and efficacious K ATP openers.
ISSN:0022-3565
1521-0103
DOI:10.1124/jpet.102.036988