6TiSCH on SCµM: Running a Synchronized Protocol Stack without Crystals
We report the first time-synchronized protocol stack running on a crystal-free device. We use an early prototype of the Single-Chip micro Mote, SCµM, a single-chip 2×3 mm 2 mote-on-a-chip, which features an ARM Cortex-M0 micro-controller and an IEEE802.15.4 radio. This prototype consists of an FPGA...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 20; no. 7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
30.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We report the first time-synchronized protocol stack running on a crystal-free device. We use an early prototype of the Single-Chip micro Mote, SCµM, a single-chip 2×3 mm 2 mote-on-a-chip, which features an ARM Cortex-M0 micro-controller and an IEEE802.15.4 radio. This prototype consists of an FPGA version of the micro-controller, connected to the SCµM chip which implements the radio front-end. We port OpenWSN, a reference implementation of a synchronized protocol stack, onto SCµM. The challenge is that SCµM has only on-chip oscillators, with no absolute time reference such as a crystal. We use two calibration steps - receiving packets via the on-chip optical receiver and RF transceiver - to initially calibrate the oscillators on SCµM so that it can send frames to an off-the-shelf IEEE802.15.4 radio. We then use a digital trimming compensation algorithm based on tick skipping to turn a 567 ppm apparent drift into a 10 ppm drift. This allows us to run a full-featured standards-compliant 6TiSCH network between one SCµM and one OpenMote. This is a step towards realizing the smart dust vision of ultra-small and cheap ubiquitous wireless devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20071912 |