Electronic spectrum of the AlC(2) radical

An electronic transition of the AlC2 radical (C2v structure) has been observed using laser-induced fluorescence spectroscopy. The molecule was prepared in a supersonic expansion by ablation of an aluminum rod in the presence of acetylene gas. A spectrum was recorded in the 451-453 nm region and assi...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Vol. 111; no. 47; pp. 11986 - 11989
Main Authors Chasovskikh, Egor, Jochnowitz, Evan B, Kim, Eunsook, Maier, John P, Navizet, Isabelle
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 29.11.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An electronic transition of the AlC2 radical (C2v structure) has been observed using laser-induced fluorescence spectroscopy. The molecule was prepared in a supersonic expansion by ablation of an aluminum rod in the presence of acetylene gas. A spectrum was recorded in the 451-453 nm region and assigned to the C 2B2-X 2A1 system (T0 = 22,102.7 cm(-1)) based on a rotational analysis and agreement with calculated molecular parameters and excitation energies. Ab initio results obtained using couple cluster methods are in accord with previous theoretical work which concludes that ground-state AlC2 possesses a T-shaped C2v 2A1 geometry, with the linear 2Sigma+ AlCC isomer 0.70 eV higher in energy. A fit of the experimental spectrum yields rotational constants in the ground and electronically excited states that are in reasonable agreement with the calculated values: A'' = 1.7093(107), B'' = 0.4052(50), C'' = 0.3228(49) cm(-1) for the X 2A1 state, and A' = 1.5621(137), B' = 0.4028(46), C' = 0.3201(54) cm(-1) for C 2B2. Variation in individual fluorescence lifetimes suggests that the emitting C 2B2 state undergoes rovibronic mixing with lower lying electronic states.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1089-5639
1520-5215
DOI:10.1021/jp075169e