G-quartet oligonucleotides: A new class of signal transducer and activator of transcription 3 inhibitors that suppresses growth of prostate and breast tumors through induction of apoptosis

Stat3 is a signaling molecular and oncogene activated frequently in many human malignancies including the majority of prostate, breast, and head and neck cancers; yet, no current chemotherapeutic approach has been implemented clinically that specifically targets Stat3. We recently developed G-rich o...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 64; no. 18; pp. 6603 - 6609
Main Authors NAIJIE JING, YIDONG LI, WEIJUN XIONG, WEI SHA, LING JING, TWEARDY, David J
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.09.2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Stat3 is a signaling molecular and oncogene activated frequently in many human malignancies including the majority of prostate, breast, and head and neck cancers; yet, no current chemotherapeutic approach has been implemented clinically that specifically targets Stat3. We recently developed G-rich oligodeoxynucleotides, which form intramolecular G-quartet structures (GQ-ODN), as a new class of Stat3 inhibitor. GQ-ODN targeted Stat3 protein directly inhibiting its ability to bind DNA. When delivered into cells using polyethyleneimine as vehicle, GQ-ODN blocked ligand-induced Stat3 activation and Stat3-mediated transcription of antiapoptotic genes. To establish the effectiveness of GQ-ODN as a potential new chemotherapeutic agent, we systemically administered GQ-ODN (T40214 or T40231) plus polyethyleneimine or polyethyleneimine alone (placebo) by tail-vein injection into nude mice with prostate and breast tumor xenografts. Whereas the mean volume of breast tumor xenografts in placebo-treated mice increased >7-fold over 18 days, xenografts in the GQ-ODN-treated mice remained unchanged. Similarly, whereas the mean volume of prostate tumor xenografts in placebo-treated mice increased 9-fold over 10 days, xenografts in GQ-ODN-treated mice increased by only 2-fold. Biochemical examination of tumors from GQ-ODN-treated mice demonstrated a significant reduction in Stat3 activation, levels of the antiapoptotic proteins Bcl-2 and Bcl-xL, and an 8-fold increase in the number of apoptotic cells compared with the tumors of placebo-treated mice. Thus, GQ-ODN targeting Stat3 induces tumor cell apoptosis when delivered into tumor xenografts and represents a novel class of chemotherapeutic agents that holds promise for the systemic treatment of many forms of metastatic cancer.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-03-4041