Emotion Elicitation with Stimuli Datasets in Automatic Affect Recognition Studies – Umbrella Review

Affect Recognition has become a relevant research field in Artificial Intelligence development. Nevertheless, its progress is impeded by poor methodological conduct in psychology, computer science, and, consequently, affective computing. We address this issue by providing a rigorous overview of Emot...

Full description

Saved in:
Bibliographic Details
Published inHuman-Computer Interaction - INTERACT 2021 Vol. 12934; no. Part III; pp. 248 - 269
Main Authors Jemioło, Paweł, Storman, Dawid, Giżycka, Barbara, Ligęza, Antoni
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Affect Recognition has become a relevant research field in Artificial Intelligence development. Nevertheless, its progress is impeded by poor methodological conduct in psychology, computer science, and, consequently, affective computing. We address this issue by providing a rigorous overview of Emotion Elicitation utilising stimuli datasets in Affect Recognition studies. We identified relevant trials by exploring five electronic databases and other sources. Eligible studies were those reviews identified through the title, abstract and full text, which aimed to include subjects who underwent Emotion Elicitation in laboratory conditions with passive stimuli presentation for Automatic Affect Recognition. Two independent reviewers were involved in each step in the process of identification of eligible studies. The discussion resolved any discrepancies. 16 of 1308 references met the inclusion criteria. The 16 papers reviewed 271 primary studies, in which 3515 participants were examined. We found out that datasets containing video, music, and pictures stimuli are most widely explored, while researchers should focus more on these incorporating audio excerpts. Five of the most frequently analysed emotions are: sadness, anger, happiness, fear and joyfulness. The Elicitation Effectiveness and techniques towards emotion assessment, are not reported by the review authors. We also provide conclusions about the lack of studies concerning Deep Learning methods. All of the included studies were of Critically low quality. Much of the critical information is missing in the reviewed papers, and therefore a comprehensive view on this research area is disturbingly hard to claim.
ISBN:9783030856120
3030856127
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-85613-7_18