New Symmetry-less ILP Formulation for the Classical One Dimensional Bin-Packing Problem

In this article, we address the classical One-Dimensional Bin Packing Problem (1D-BPP), an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69p...

Full description

Saved in:
Bibliographic Details
Published inComputing and Combinatorics Vol. 12273; pp. 423 - 434
Main Authors Hadj Salem, Khadija, Kieffer, Yann
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2020
Springer International Publishing
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we address the classical One-Dimensional Bin Packing Problem (1D-BPP), an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {NP}$$\end{document}-hard combinatorial optimization problem. We propose a new formulation of integer linear programming for the problem, which reduces the search space compared to those described in the literature, as well as two families of cutting planes. Computational experiments are conducted on the data-set found in BPPLib and the results show that it is possible to solve more instances and to decrease the computation time by using our new formulation.
ISBN:9783030581497
3030581497
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-58150-3_34