Representation of Explanations of Possibilistic Inference Decisions

In this paper, we study how to explain to end-users the inference results of possibilistic rule-based systems. We formulate a necessary and sufficient condition for justifying by a relevant subset of rule premises the possibility degree of each output attribute value. We apply functions to reduce th...

Full description

Saved in:
Bibliographic Details
Published inSymbolic and Quantitative Approaches to Reasoning with Uncertainty Vol. 12897; pp. 513 - 527
Main Authors Baaj, Ismaïl, Poli, Jean-Philippe, Ouerdane, Wassila, Maudet, Nicolas
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2021
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, we study how to explain to end-users the inference results of possibilistic rule-based systems. We formulate a necessary and sufficient condition for justifying by a relevant subset of rule premises the possibility degree of each output attribute value. We apply functions to reduce the selected premises, in order to form two kinds of explanations: the justification and the unexpectedness of the possibility degree of an output attribute value. The justification is composed of possibilistic expressions that are sufficient to justify the possibility degree of the output attribute value. The unexpectedness is a set of possible or certain possibilistic expressions, which are not involved in the determination of the considered inference result although there may appear to be a potential incompatibility between them and the considered inference result. We then define a representation of explanations of possibilistic inference decisions that relies on conceptual graphs and may be the input of natural language generation systems. Our extracted justification and unexpectedness are represented by nested conceptual graphs. All our constructions are illustrated with an example of a possibilistic rule-based system that controls the blood sugar level of a patient with type 1 diabetes.
ISBN:3030867714
9783030867713
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-86772-0_37