Accelerated Information Dissemination on Networks with Local and Global Edges
Bootstrap percolation is a classical model for the spread of information in a network. In the round-based version, nodes of an undirected graph become active once at least r neighbors were active in the previous round. We propose the perturbed percolation process: a superposition of two percolation...
Saved in:
Published in | Structural Information and Communication Complexity Vol. 13298; pp. 79 - 97 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2022
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bootstrap percolation is a classical model for the spread of information in a network. In the round-based version, nodes of an undirected graph become active once at least r neighbors were active in the previous round. We propose the perturbed percolation process: a superposition of two percolation processes on the same node set. One process acts on a local graph with activation threshold 1, the other acts on a global graph with threshold r – representing local and global edges, respectively. We consider grid-like local graphs and expanders as global graphs on n nodes.
For the extreme case r=1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r = 1$$\end{document}, all nodes are active after O(logn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(\log n)$$\end{document} rounds, while the process spreads only polynomially fast for the other extreme case r≥n\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$r \ge n$$\end{document}. For a range of suitable values of r, we prove that the process exhibits both phases of the above extremes: It starts with a polynomial growth and eventually transitions from at most cn to n active nodes, for some constant c∈(0,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c \in (0, 1)$$\end{document}, in O(logn)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$O(\log n)$$\end{document} rounds. We observe this behavior also empirically, considering additional global-graph models. |
---|---|
ISBN: | 9783031099922 3031099923 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-031-09993-9_5 |