Accelerated Information Dissemination on Networks with Local and Global Edges

Bootstrap percolation is a classical model for the spread of information in a network. In the round-based version, nodes of an undirected graph become active once at least r neighbors were active in the previous round. We propose the perturbed percolation process: a superposition of two percolation...

Full description

Saved in:
Bibliographic Details
Published inStructural Information and Communication Complexity Vol. 13298; pp. 79 - 97
Main Authors Cohen, Sarel, Fischbeck, Philipp, Friedrich, Tobias, Krejca, Martin S., Sauerwald, Thomas
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bootstrap percolation is a classical model for the spread of information in a network. In the round-based version, nodes of an undirected graph become active once at least r neighbors were active in the previous round. We propose the perturbed percolation process: a superposition of two percolation processes on the same node set. One process acts on a local graph with activation threshold 1, the other acts on a global graph with threshold r – representing local and global edges, respectively. We consider grid-like local graphs and expanders as global graphs on n nodes. For the extreme case r=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r = 1$$\end{document}, all nodes are active after O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} rounds, while the process spreads only polynomially fast for the other extreme case r≥n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r \ge n$$\end{document}. For a range of suitable values of r, we prove that the process exhibits both phases of the above extremes: It starts with a polynomial growth and eventually transitions from at most cn to n active nodes, for some constant c∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c \in (0, 1)$$\end{document}, in O(logn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n)$$\end{document} rounds. We observe this behavior also empirically, considering additional global-graph models.
ISBN:9783031099922
3031099923
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-031-09993-9_5