3-Keto-5-aminohexanoate cleavage enzyme: a common fold for an uncommon Claisen-type condensation

The exponential increase in genome sequencing output has led to the accumulation of thousands of predicted genes lacking a proper functional annotation. Among this mass of hypothetical proteins, enzymes catalyzing new reactions or using novel ways to catalyze already known reactions might still wait...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 286; no. 31; pp. 27399 - 27405
Main Authors Bellinzoni, Marco, Bastard, Karine, Perret, Alain, Zaparucha, Anne, Perchat, Nadia, Vergne, Carine, Wagner, Tristan, de Melo-Minardi, Raquel C, Artiguenave, François, Cohen, Georges N, Weissenbach, Jean, Salanoubat, Marcel, Alzari, Pedro M
Format Journal Article
LanguageEnglish
Published United States American Society for Biochemistry and Molecular Biology 05.08.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The exponential increase in genome sequencing output has led to the accumulation of thousands of predicted genes lacking a proper functional annotation. Among this mass of hypothetical proteins, enzymes catalyzing new reactions or using novel ways to catalyze already known reactions might still wait to be identified. Here, we provide a structural and biochemical characterization of the 3-keto-5-aminohexanoate cleavage enzyme (Kce), an enzymatic activity long known as being involved in the anaerobic fermentation of lysine but whose catalytic mechanism has remained elusive so far. Although the enzyme shows the ubiquitous triose phosphate isomerase (TIM) barrel fold and a Zn(2+) cation reminiscent of metal-dependent class II aldolases, our results based on a combination of x-ray snapshots and molecular modeling point to an unprecedented mechanism that proceeds through deprotonation of the 3-keto-5-aminohexanoate substrate, nucleophilic addition onto an incoming acetyl-CoA, intramolecular transfer of the CoA moiety, and final retro-Claisen reaction leading to acetoacetate and 3-aminobutyryl-CoA. This model also accounts for earlier observations showing the origin of carbon atoms in the products, as well as the absence of detection of any covalent acyl-enzyme intermediate. Kce is the first representative of a large family of prokaryotic hypothetical proteins, currently annotated as the "domain of unknown function" DUF849.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC3149333
Both authors contributed equally to this work.
Present address: Dept. of Computer Science, Federal University of Minas Gerais, 6627 Pampulha, Belo Horizonte, Brazil.
Present address: Medical Genetics Dept., School of Medical Sciences, University of Campinas, UNICAMP, Campinas, São Paulo 13083-000, Brazil.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M111.253260