Cardiac Voltage-Gated Sodium Channel Nav1.5 Is Regulated by Nedd4-2 Mediated Ubiquitination

Nav1.5, the cardiac isoform of the voltage-gated Na channel, is critical to heart excitability and conduction. However, the mechanisms regulating its expression at the cell membrane are poorly understood. The Nav1.5 C-terminus contains a PY-motif (xPPxY) that is known to act as binding site for Nedd...

Full description

Saved in:
Bibliographic Details
Published inCirculation research Vol. 95; no. 3; pp. 284 - 291
Main Authors van Bemmelen, Miguel X, Rougier, Jean-Sébastien, Gavillet, Bruno, Apothéloz, Florine, Daidié, Dorothée, Tateyama, Michihiro, Rivolta, Ilaria, Thomas, Marc A, Kass, Robert S, Staub, Olivier, Abriel, Hugues
Format Journal Article
LanguageEnglish
Published Hagerstown, MD American Heart Association, Inc 06.08.2004
Lippincott
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nav1.5, the cardiac isoform of the voltage-gated Na channel, is critical to heart excitability and conduction. However, the mechanisms regulating its expression at the cell membrane are poorly understood. The Nav1.5 C-terminus contains a PY-motif (xPPxY) that is known to act as binding site for Nedd4/Nedd4-like ubiquitin-protein ligases. Because Nedd4-2 is well expressed in the heart, we investigated its role in the ubiquitination and regulation of Nav1.5. Yeast two-hybrid and GST-pulldown experiments revealed an interaction between Nav1.5 C-terminus and Nedd4-2, which was abrogated by mutating the essential tyrosine of the PY-motif. Ubiquitination of Nav1.5 was detected in both transfected HEK cells and heart extracts. Furthermore, Nedd4-2–dependent ubiquitination of Nav1.5 was observed. To test for a functional role of Nedd4-2, patch-clamp experiments were performed on HEK cells expressing wild-type and mutant forms of both Nav1.5 and Nedd4-2. Nav1.5 current density was decreased by 65% upon Nedd4-2 cotransfection, whereas the PY-motif mutant channels were not affected. In contrast, a catalytically inactive Nedd4-2 had no effect, indicating that ubiquitination mediates this downregulation. However, Nedd4-2 did not alter the whole-cell or the single channel biophysical properties of Nav1.5. Consistent with the functional findings, localization at the cell periphery of Nav1.5-YFP fusion proteins was reduced upon Nedd4-2 coexpression. The Nedd4-1 isoform did not regulate Nav1.5, suggesting that Nedd4-2 is a specific regulator of Nav1.5. These results demonstrate that Nav1.5 can be ubiquitinated in heart tissues and that the ubiquitin-protein ligase Nedd4-2 acts on Nav1.5 by decreasing the channel density at the cell surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0009-7330
1524-4571
DOI:10.1161/01.RES.0000136816.05109.89