Enantioselective S-oxygenation of para-methoxyphenyl-1,3-dithiolane by various tissue preparations: effect of estradiol

Liver, kidney, and lung microsomes prepared from nonpretreated female Sprague-Dawley rats catalyze the NADPH- and oxygen-dependent S-oxygenation of para-methoxyphenyl-1,3-dithiolane. Studies on the biochemical mechanism of dithiolane S-oxygenation in liver, kidney, and lung microsomes suggest that t...

Full description

Saved in:
Bibliographic Details
Published inMolecular pharmacology Vol. 37; no. 2; pp. 319 - 327
Main Authors CASHMAN, J. R, OLSEN, L. D, LAMBERT, C. E, PRESAS, M. J
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Pharmacology and Experimental Therapeutics 01.02.1990
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Liver, kidney, and lung microsomes prepared from nonpretreated female Sprague-Dawley rats catalyze the NADPH- and oxygen-dependent S-oxygenation of para-methoxyphenyl-1,3-dithiolane. Studies on the biochemical mechanism of dithiolane S-oxygenation in liver, kidney, and lung microsomes suggest that this reaction is catalyzed in a diastereoselective and enantioselective fashion by the flavin-containing monooxygenase and, to a lesser extent, the cytochromes P-450. This conclusion is based on results examining the effects of selective cytochrome P-450 inhibitors and positive effectors, microsome heat-inactivation treatment, and alternate substrates for the flavin-containing monooxygenase. Liver and kidney microsomes prepared from ovarectomized female rats tended to have decreased S-oxygenase activity, compared with nonpretreated female rats, whereas ovarectomized rats pretreated with estradiol had markedly lower S-oxygenase activity. In contrast, lung microsomal S-oxygenase activity, which is low in pulmonary microsomes from nonpretreated female rats, increases 2-4-fold after ovariectomization and estradiol pretreatment. In female Sprague-Dawley rats, estradiol pretreatment is mainly responsible for the large decrease (or increase) in S-oxygenase activity observed in the tissues examined, although it is unlikely that estradiol alone controls flavin-containing monooxygenase S-oxygenase activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0026-895X
1521-0111