Model Revision from Temporal Logic Properties in Computational Systems Biology

Systems biologists build models of bio-molecular processes from knowledge acquired both at the gene and protein levels, and at the phenotype level through experiments done in wild-life and mutated organisms. In this chapter, we present qualitative and quantitative logic learning tools, and illustrat...

Full description

Saved in:
Bibliographic Details
Published inProbabilistic Inductive Logic Programming Vol. 4911; pp. 287 - 304
Main Authors Fages, François, Soliman, Sylvain
Format Book Chapter
LanguageEnglish
Published Germany Springer Berlin / Heidelberg 2008
Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Systems biologists build models of bio-molecular processes from knowledge acquired both at the gene and protein levels, and at the phenotype level through experiments done in wild-life and mutated organisms. In this chapter, we present qualitative and quantitative logic learning tools, and illustrate how they can be useful to the modeler. We focus on biochemical reaction models written in the Systems Biology Markup Language SBML, and interpreted in the Biochemical Abstract Machine BIOCHAM. We first present a model revision algorithm for inferring reaction rules from biological properties expressed in temporal logic. Then we discuss the representations of kinetic models with ordinary differential equations (ODEs) and with stochastic logic programs (SLPs), and describe a parameter search algorithm for finding parameter values satisfying quantitative temporal properties. These methods are illustrated by a simple model of the cell cycle control, and by an application to the modelling of the conditions of synchronization in period of the cell cycle by the circadian cycle.
ISBN:9783540786511
3540786511
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-540-78652-8_11