Experimental antitumor activity of taxotere (RP 56976, NSC 628503), a taxol analogue

Taxotere (RP 56976; NSC 628503; N-debenzoyl-N-tert-butoxycarbonyl-10-deacetyl taxol) is a new microtubule stabilizing agent. It is obtained by semisynthesis from a noncytotoxic precursor extracted from the needles of the tree, Taxus baccata L. Taxotere was evaluated for antitumor activity against a...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Baltimore) Vol. 51; no. 18; pp. 4845 - 4852
Main Authors BISSERY, M.-C, GUENARD, D, GUERITTE-VOEGELEIN, F, LAVELLE, F
Format Conference Proceeding Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.09.1991
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Taxotere (RP 56976; NSC 628503; N-debenzoyl-N-tert-butoxycarbonyl-10-deacetyl taxol) is a new microtubule stabilizing agent. It is obtained by semisynthesis from a noncytotoxic precursor extracted from the needles of the tree, Taxus baccata L. Taxotere was evaluated for antitumor activity against a variety of transplantable tumors of mice. Taxotere had no marked schedule dependency and was found active by the i.v. and the i.p. routes. Upon i.v. administration, 9 of 11 tumor models tested responded to Taxotere. B16 melanoma was found highly sensitive to Taxotere, with a tumor growth inhibition of 0% and a 3.0 log10 tumor cell kill at the maximum tolerated dose. In the same trial, taxol produced only a 1.1 log10 tumor cell kill at the maximum tolerated dose. Taxotere cured early stage pancreatic ductal adenocarcinoma 03 (6 of 6 cures) and colon adenocarcinoma 38 (7 of 7 cures). It also effected greater than 80% complete regressions of advanced stage disease with both tumors. Taxotere was active against early and advanced stage colon adenocarcinoma 51, with 2.3 and 1.7 log10 cell kill, respectively. Four other tumors responded to a lesser extent: Lewis lung (5.5% tumor growth inhibition), Glasgow osteogenic sarcoma (27.2% tumor growth inhibition), L1210 and P388 leukemias (70 and 54% increase in life span, respectively). Because of its good preclinical activity and its unique mechanism of action, Taxotere has entered Phase I clinical trials.
ISSN:0008-5472
1538-7445