A Radionuclide Therapy Treatment Planning and Dose Estimation System

An object-oriented software system is described for estimating internal emitter absorbed doses using a set of computer modules operating within a personal computer environment. The system is called the Radionuclide Treatment Planning and Absorbed Dose Estimation System (RTDS). It is intended for rad...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of nuclear medicine (1978) Vol. 40; no. 7; pp. 1151 - 1153
Main Authors Liu, An, Williams, Lawrence E, Lopatin, George, Yamauchi, Dave M, Wong, Jeffrey Y.C, Raubitschek, Andrew A
Format Journal Article
LanguageEnglish
Published Reston, VA Soc Nuclear Med 01.07.1999
Society of Nuclear Medicine
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An object-oriented software system is described for estimating internal emitter absorbed doses using a set of computer modules operating within a personal computer environment. The system is called the Radionuclide Treatment Planning and Absorbed Dose Estimation System (RTDS). It is intended for radioimmunotherapy applications, although other forms of internal emitter therapy may also be considered. Four software modules interact through a database backend. Clinical, demographic and image data are directly entered into the database. Modules include those devoted to clinical imaging (nuclear, CT and MR), activity determination, organ compartmental modeling and absorbed dose estimation. Both standard phantom (Medical Internal Radiation Dose [MIRD]) and patient-specific absorbed doses are estimated. All modules interact with the database backend so that changes in one process do not influence other operations. Results of the modular operations are written to the database as computations are completed. Dose-volume histograms are an intrinsic part of the output for patient-specific absorbed dose estimates. A sample dose estimate for a potential 90Y monoclonal antibody is described. A four-module software system has been implemented to estimate MIRD phantom and patient-specific absorbed doses. Computations of the doses and their statistical distribution for a pure beta emitter such as 90Y take approximately 1 min on a 300 MHz personal computer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0161-5505
1535-5667