Disposition and Biotransformation of the Antiretroviral Drug Nevirapine in Humans

The pharmacokinetics and biotransformation of the antiretroviral agent nevirapine (NVP) after autoinduction were characterized in eight healthy male volunteers. Subjects received 200-mg NVP tablets once daily for 2 weeks, followed by 200 mg twice daily for 2 weeks. Then they received a single oral d...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and disposition Vol. 27; no. 8; pp. 895 - 901
Main Authors RISKA, P, LAMSON, M, MACGREGOR, T, SABO, J, HATTOX, S, PAV, J, KEIRNS, J
Format Journal Article
LanguageEnglish
Published Bethesda, MD American Society for Pharmacology and Experimental Therapeutics 01.08.1999
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The pharmacokinetics and biotransformation of the antiretroviral agent nevirapine (NVP) after autoinduction were characterized in eight healthy male volunteers. Subjects received 200-mg NVP tablets once daily for 2 weeks, followed by 200 mg twice daily for 2 weeks. Then they received a single oral dose (solution) of 50 mg containing 100 μCi of [ 14 C]NVP. Biological fluids were analyzed for total radioactivity, parent compound (HPLC/UV), and metabolites (electrospray liquid chromatography/mass spectroscopy and liquid chromatography/tandem mass spectroscopy). Mean recovery of radioactivity was 91.4%, with 81.3% excreted in urine and 10.1% recovered in the feces over a period of 10 days. Circulating radioactivity was evenly distributed between whole blood and plasma. At maximum plasma concentration, parent compound accounted for ∼75% of the circulating radioactivity. Mean plasma elimination half-lives for total radioactivity and NVP were 21.3 and 20.0 h, respectively. Several metabolites were identified in urine including 2-hydroxynevirapine glucuronide (18.6%), 3-hydroxynevirapine glucuronide (25.7%), 12-hydroxynevirapine glucuronide (23.7%), 8-hydroxynevirapine glucuronide (1.3%), 3-hydroxynevirapine (1.2%), 12-hydroxynevirapine (0.6%), and 4-carboxynevirapine (2.4%). Greater than 80% of the radioactivity in urine was made up of glucuronidated conjugates of hydroxylated metabolites of NVP. Thus, cytochrome P-450 metabolism, glucuronide conjugation, and urinary excretion of glucuronidated metabolites represent the primary route of NVP biotransformation and elimination in humans. Only a small fraction of the dose (2.7%) was excreted in urine as parent compound.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0090-9556
1521-009X