Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons
Activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors is implicated in the pathophysiology of traumatic brain injury. Here, the effects of mechanical injury on the voltage-dependent magnesium (Mg2+) block of NMDA currents in cultured rat cortical neurons were examined. Stretch...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 274; no. 5294; pp. 1921 - 1923 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Association for the Advancement of Science
13.12.1996
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Activation of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors is implicated in the pathophysiology of traumatic brain injury. Here, the effects of mechanical injury on the voltage-dependent magnesium (Mg2+) block of NMDA currents in cultured rat cortical neurons were examined. Stretch-induced injury was found to reduce the Mg2+ blockade, resulting in significantly larger ionic currents and increases in intracellular free calcium (Ca2+) concentration after NMDA stimulation of injured neurons. The Mg2+ blockade was partially restored by increased extracellular Mg2+ concentration or by pretreatment with the protein kinase C inhibitor calphostin C. These findings could account for the secondary pathological changes associated with traumatic brain injury. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.274.5294.1921 |