Design optimization of a Delta-like parallel robot through global stiffness performance evaluation
This paper presents the design optimization of a Delta-like robot manipulator with respect to multiple global stiffness objectives. For this purpose, a systematic elasto-geometrical modeling method is used to derive the analytical manipulator stiffness models by taking into account their link and jo...
Saved in:
Published in | 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 5159 - 5166 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424438037 1424438039 |
ISSN | 2153-0858 |
DOI | 10.1109/IROS.2009.5353906 |
Cover
Loading…
Summary: | This paper presents the design optimization of a Delta-like robot manipulator with respect to multiple global stiffness objectives. For this purpose, a systematic elasto-geometrical modeling method is used to derive the analytical manipulator stiffness models by taking into account their link and joint compliances. The models are then involved within a statistically sensitivity analysis of the influence of the geometric parameters on four global indices that describe the structure stiffness over the workspace. Multi-Objective Genetic Algorithm, i.e. Pareto-optimization, is taken as the appropriate framework for the definition and the solution of the addressed multi-objective optimization problem. Our approach is original in the sense that it is systematic and it can be applied to any serial and parallel manipulators for which stiffness is a critical issue. |
---|---|
ISBN: | 9781424438037 1424438039 |
ISSN: | 2153-0858 |
DOI: | 10.1109/IROS.2009.5353906 |