Bayesian 3D modeling from images using multiple depth maps
This paper addresses the problem of reconstructing the geometry and color of a Lambertian scene, given some fully calibrated images acquired with wide baselines. In order to completely model the input data, we propose to represent the scene as a set of colored depth maps, one per input image. We for...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 885 - 891 vol. 2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper addresses the problem of reconstructing the geometry and color of a Lambertian scene, given some fully calibrated images acquired with wide baselines. In order to completely model the input data, we propose to represent the scene as a set of colored depth maps, one per input image. We formulate the problem as a Bayesian MAP problem which leads to an energy minimization method. Hidden visibility variables are used to deal with occlusion, reflections and outliers. The main contributions of this work are: a prior for the visibility variables that treats the geometric occlusions; and a prior for the multiple depth maps model that smoothes and merges the depth maps while enabling discontinuities. Real world examples showing the efficiency and limitations of the approach are presented. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.84 |