Microsomal activation of 2-amino-3-methylimidazo[4,5-f]quinoline, a pyrolysate of sardine and beef extracts, to a mutagenic intermediate
The mechanism involved in the metabolic activation of 2-amino-3-methylimidazo[4,5-f]quinoline, which is a pyrolysate isolated from broiled foods, to a mutagenic intermediate was studied in vitro. In a system containing hepatic microsomes and reduced nicotinamide adenine dinucleotide phosphate, 2-ami...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 43; no. 12; pp. 5768 - 5774 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.12.1983
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The mechanism involved in the metabolic activation of 2-amino-3-methylimidazo[4,5-f]quinoline, which is a pyrolysate isolated from broiled foods, to a mutagenic intermediate was studied in vitro. In a system containing hepatic microsomes and reduced nicotinamide adenine dinucleotide phosphate, 2-amino-3-methylimidazo[4,5-f]quinoline was converted to a product which was directly mutagenic to Salmonella typhimurium. The structure of the mutagenic metabolite was determined as the 2-N-hydroxy derivative on the basis of the chemical properties and the mass spectral evidence of the azoxy adduct with o-nitrosotoluene. The activation reaction was mediated by microsomal enzymes and was inhibited by carbon monoxide, 7,8-benzoflavone, and other chemicals which were known to inhibit the cytochrome P-450-dependent reaction. With the use of four forms of purified cytochrome P-450, the N-hydroxylation of 2-amino-3-methylimidazo[4,5-f]quinoline and the induction of the reverse mutation of the bacteria were clearly demonstrated to be catalyzed mainly by a high-spin form of cytochrome P-450, P-448 II-a. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0008-5472 1538-7445 |