Effects of Selective and Unselective Cyclooxygenase Inhibitors on Prostanoid Release from Various Rat Organs
It has been assumed that cyclooxygenase-2 (COX-2) is solely responsible for inflammatory processes. Recently, this view has been challenged because COX-2-selective agents caused a delay of gastric ulcer healing and exacerbation of inflammation in rats. To further characterize organ-specific toxic ef...
Saved in:
Published in | The Journal of pharmacology and experimental therapeutics Vol. 292; no. 3; p. 1161 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Pharmacology and Experimental Therapeutics
01.03.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | It has been assumed that cyclooxygenase-2 (COX-2) is solely responsible for inflammatory processes. Recently, this view has
been challenged because COX-2-selective agents caused a delay of gastric ulcer healing and exacerbation of inflammation in
rats. To further characterize organ-specific toxic effects of selective and nonselective COX inhibitors, we assessed the eicosanoid
release from different rat organs ex vivo after oral administration of the COX-2-selective inhibitor NS-398 and the unselective
COX inhibitors diclofenac, meloxicam, and ketorolac. Prostanoid and leukotriene release from tissue fragments of the stomach,
kidney, lung, and brain were determined after ex vivo incubation of tissue fragments in Tyrode's solution for 10 min at 37°C.
Ketorolac (0.1, 0.3, and 0.9 mg/kg) inhibited prostanoid release from all organs most potently and led to a significant increase
of leukotriene release from the lung. Effects of diclofenac and meloxicam (1, 3, and 9 mg/kg each) were similar for all organs
tested. At 9 mg/kg, 6keto-prostaglandin F (PGF) 1α release from gastric mucosa was reduced by 79.1 ± 11.4 and 87.6 ± 7.7% and PGE 2 release from rat kidney was inhibited by 60.4 ± 6.8 and 78.6 ± 16.6% by diclofenac and meloxicam, respectively. NS-398 did
not reduce prostanoid release from the lung. Consistent with the reported constitutive expression of COX-2, prostanoid release
from kidney and brain was reduced by 20 to 30%. The release of 6keto-PGF 1α from gastric mucosa was reduced by 34.7 ± 22.2% at 3 mg/kg and by 86.9 ± 12.7% at 9 mg/kg. At these doses, NS-398 has been
previously shown to be COX-2 selective. Because PGF 1α is the stable breakdown product of PGI 2 , these results suggest that COX-2 contributes to PGI 2 synthesis in the rat stomach. |
---|---|
ISSN: | 0022-3565 1521-0103 |