Abnormal accumulation of prion protein mRNA in muscle fibers of patients with sporadic inclusion-body myositis and hereditary inclusion- body myopathy

Sporadic inclusion-body myositis is the most common progressive muscle disease of older patients. The muscle biopsy demonstrates mononuclear cell inflammation and vacuolated muscle fibers containing paired helical filaments and 6 to 10-nm fibrils, both resembling those of Alzheimer brain, and Congo-...

Full description

Saved in:
Bibliographic Details
Published inThe American journal of pathology Vol. 145; no. 6; pp. 1280 - 1284
Main Authors Sarkozi, E, Askanas, V, Engel, WK
Format Journal Article
LanguageEnglish
Published Bethesda, MD ASIP 01.12.1994
American Society for Investigative Pathology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sporadic inclusion-body myositis is the most common progressive muscle disease of older patients. The muscle biopsy demonstrates mononuclear cell inflammation and vacuolated muscle fibers containing paired helical filaments and 6 to 10-nm fibrils, both resembling those of Alzheimer brain, and Congo-red positivity. Hereditary inclusion-body myopathy designates patients cytopathologically similar but without inflammation. In both muscle diseases, prion, and several proteins characteristic of Alzheimer brain--eg, beta-amyloid protein and hyperphosphorylated tau (which normally are expressed mainly in neurons), and apolipoprotein E--are abnormally accumulated in vacuolated muscle fibers, by unknown mechanisms. We now demonstrate in both muscle diseases that prion mRNA is strongly expressed in the vacuolated muscle fibers, which suggests that their accumulated prion protein results, at least partly, from increased gene expression. This, to our knowledge, is the first demonstration of abnormally increased prion mRNA in human disease. Another novel finding is the increased prion mRNA in human muscle macrophages, and both increased prion protein and prion mRNA in regenerating muscle fibers. The latter indicates that prion may play a role in human muscle development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9440
1525-2191