Potent stimulation of myofilament force and adenosine triphosphatase activity of canine cardiac muscle through a direct enhancement of troponin C Ca++ binding by MCI-154, a novel cardiotonic agent

In the present study we have analyzed a likely biochemical mechanism underlying the Ca++-sensitizing action of MCI-154 (6-[4-(4'-pyridyl)aminophenyl)-4,5-dihydro-3(2H)-pyridazinone hydrochloride), a novel cardiotonic agent, on the contractile protein system. MCI-154 (10(-7) to 10(-4) M) enhance...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of pharmacology and experimental therapeutics Vol. 250; no. 1; pp. 272 - 277
Main Authors Kitada, Y, Kobayashi, M, Narimatsu, A, Ohizumi, Y
Format Journal Article
LanguageEnglish
Published United States American Society for Pharmacology and Experimental Therapeutics 01.07.1989
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the present study we have analyzed a likely biochemical mechanism underlying the Ca++-sensitizing action of MCI-154 (6-[4-(4'-pyridyl)aminophenyl)-4,5-dihydro-3(2H)-pyridazinone hydrochloride), a novel cardiotonic agent, on the contractile protein system. MCI-154 (10(-7) to 10(-4) M) enhanced the tension development induced by -log molar-free Ca++ concentration (pCa) 5.8 in chemically skinned fiber from the canine right ventricular muscle in a concentration-dependent manner. At pCa 7.0, MCI-154 (10(-7) to 10(-4) M) markedly increased adenosine triphosphatase (ATPase) activities of canine myofibrils and reconstituted actomyosin. In myofibrils and reconstituted actomyosin, MCI-154 (10(-7) to 10(-4) M) caused a parallel shift of the pCa-ATPase activity relation curve to the left without affecting the maximum activity, suggesting an increase in Ca++ sensitivity. MCI-154 (10(-8) to 10(-4) M) had little effect on actin-activated, Mg++, Ca++ and (K+, EDTA)-ATPase activities of myosin. Ca++ binding to cardiac myofibrils or purified cardiac troponin was increased by 10(-4) M MCI-154. These results suggest that MCI-154 enhances Ca++ binding to cardiac troponin C to elevate the Ca++ sensitivity of myofilaments and thus may cause a positive inotropic action in cardiac muscle. MCI-154 may provide a valuable tool for studying the molecular mechanism by which Ca++ regulates the contractile system.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3565
1521-0103