Localization of sulfated glycoprotein-2 (clusterin) on spermatozoa and in the reproductive tract of the male rat

Sulfated glycoprotein-2 (SGP-2) is one of the major proteins secreted by rat Sertoli cells and epididymal cells in culture. The disulfide-linked dimeric protein secreted by Sertoli cells and found in seminiferous tubule fluid is composed of monomers of Mr 47 000 and 34 000 whereas the epididymal pro...

Full description

Saved in:
Bibliographic Details
Published inBiology of reproduction Vol. 45; no. 1; pp. 195 - 207
Main Authors Sylvester, S R, Morales, C, Oko, R, Griswold, M D
Format Journal Article
LanguageEnglish
Published United States Society for the Study of Reproduction 01.07.1991
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Sulfated glycoprotein-2 (SGP-2) is one of the major proteins secreted by rat Sertoli cells and epididymal cells in culture. The disulfide-linked dimeric protein secreted by Sertoli cells and found in seminiferous tubule fluid is composed of monomers of Mr 47 000 and 34 000 whereas the epididymal protein exhibits monomers of Mr 40 000 and 29 000. When both forms were chemically or enzymatically deglycosylated, they yielded proteins of similar molecular weight. No modification of the higher molecular weight testicular form by epididymal cells or fluids could be detected in incubation media. SGP-2 mRNA was localized in epididymal epithelium by in situ hybridization. Northern blot analysis indicated the testicular and epididymal mRNAs were of similar size. These findings suggest that the two forms of the protein occur because of tissue-specific post-translational modifications. The detergent-extracted protein from washed testicular spermatozoa is of the higher molecular weight form while epididymal sperm carry the lower molecular weight form. Immunohistochemical evidence suggests that the testicular form is removed prior to the initial segment of the epididymis and the epididymal form is applied in the proximal caput epididymidis. SGP-2 was immunolocalized to the sperm membrane at the ultrastructural level and was distinctly different from the immunolocalization of outer dense fiber proteins and fibrous sheath proteins.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3363
1529-7268
DOI:10.1095/biolreprod45.1.195