Scalable Algorithms Using Sparse Storage for Parallel Spectral Clustering on GPU

Spectral clustering has many fundamental advantages over k-means, but has high computational complexity (O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\...

Full description

Saved in:
Bibliographic Details
Published inNetwork and Parallel Computing Vol. 13152; pp. 40 - 52
Main Authors He, Guanlin, Vialle, Stephane, Sylvestre, Nicolas, Baboulin, Marc
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2022
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spectral clustering has many fundamental advantages over k-means, but has high computational complexity (O(n3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} (n^3)$$\end{document}) and memory requirement (O(n2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {O} (n^2)$$\end{document}), making it prohibitively expensive for large datasets. In this paper we present our solution on GPU to address the scalability challenge of spectral clustering. First, we propose optimized algorithms for constructing similarity matrix directly in CSR sparse format on the GPU. Next, we leverage the spectral graph partitioning API of the GPU-accelerated nvGRAPH library for remaining computations especially for eigenvector extraction. Finally, experiments on synthetic and real-world large datasets demonstrate the high performance and scalability of our GPU implementation for spectral clustering.
ISBN:9783030935702
3030935701
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-93571-9_4