Function-Revealing Encryption Definitions and Constructions

Multi-input functional encryption is a paradigm that allows an authorized user to compute a certain function—and nothing more—over multiple plaintexts given only their encryption. The particular case of two-input functional encryption has very exciting applications, including comparing the relative...

Full description

Saved in:
Bibliographic Details
Published inSecurity and Cryptography for Networks pp. 527 - 543
Main Authors Joye, Marc, Passelègue, Alain
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2018
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multi-input functional encryption is a paradigm that allows an authorized user to compute a certain function—and nothing more—over multiple plaintexts given only their encryption. The particular case of two-input functional encryption has very exciting applications, including comparing the relative order of two plaintexts from their encrypted form (order-revealing encryption). While being extensively studied, multi-input functional encryption is not ready for a practical deployment, mainly for two reasons. First, known constructions rely on heavy cryptographic tools such as multilinear maps. Second, their security is still very uncertain, as revealed by recent devastating attacks. In this work, we investigate a simpler approach towards obtaining practical schemes for functions of particular interest. We introduce the notion of function-revealing encryption, a generalization of order-revealing encryption to any multi-input function as well as a relaxation of multi-input functional encryption. We then propose a simple construction of order-revealing encryption based on function-revealing encryption for simple functions, namely orthogonality testing and intersection cardinality. Our main result is an efficient order-revealing encryption scheme with limited leakage based on the standard DLin $$\mathrm {DLin} $$ assumption.
Bibliography:Original Abstract: Multi-input functional encryption is a paradigm that allows an authorized user to compute a certain function—and nothing more—over multiple plaintexts given only their encryption. The particular case of two-input functional encryption has very exciting applications, including comparing the relative order of two plaintexts from their encrypted form (order-revealing encryption). While being extensively studied, multi-input functional encryption is not ready for a practical deployment, mainly for two reasons. First, known constructions rely on heavy cryptographic tools such as multilinear maps. Second, their security is still very uncertain, as revealed by recent devastating attacks. In this work, we investigate a simpler approach towards obtaining practical schemes for functions of particular interest. We introduce the notion of function-revealing encryption, a generalization of order-revealing encryption to any multi-input function as well as a relaxation of multi-input functional encryption. We then propose a simple construction of order-revealing encryption based on function-revealing encryption for simple functions, namely orthogonality testing and intersection cardinality. Our main result is an efficient order-revealing encryption scheme with limited leakage based on the standard DLin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {DLin} $$\end{document} assumption.
ISBN:9783319981123
3319981129
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-98113-0_28