Inhibition of epithelial cell adhesion by retinoic acid. Relationship to reduced extracellular matrix production and alterations in Ca2+ levels
Human squamous epithelial cells maintained in growth factor-deficient medium were examined for sensitivity to all-trans retinoic acid (retinoic acid). Under conditions of low external Ca2+ (0.15 mmol/l [millimolar]), or high external Ca2+ (1.4 mmol/l), retinoic acid stimulated proliferation. Concomi...
Saved in:
Published in | The American journal of pathology Vol. 138; no. 4; pp. 887 - 895 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
ASIP
01.04.1991
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human squamous epithelial cells maintained in growth factor-deficient medium were examined for sensitivity to all-trans retinoic acid (retinoic acid). Under conditions of low external Ca2+ (0.15 mmol/l [millimolar]), or high external Ca2+ (1.4 mmol/l), retinoic acid stimulated proliferation. Concomitantly, cell-substrate adhesion was decreased. Enzyme-linked immunosorbent assays were used to assess production of two extracellular matrix components, ie, fibronectin and thrombospondin. In the presence of retinoic acid, production of both was decreased. Because both fibronectin and thrombospondin serve as epithelial cell adhesion factors, the decreased production of these moieties could contribute to reduced adhesion. Using 45Ca2+ to measure total cell-associated Ca2+ and the Ca2(+)-sensitive dye Indo-1 to measure intracellular free Ca2+, it was found that concentrations of retinoic acid that altered cell-substrate adhesion in the squamous epithelial cells had no effect on total, cell-associated Ca2+, but reduced intracellular free Ca2+ by 50% to 60%. Because Ca2+ is a regulator of adhesion, the ability of retinoic acid to modulate Ca2+ levels in the squamous epithelial cells may explain, in part, how retinoic acid influences their adhesiveness. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0002-9440 1525-2191 |