Identification of the main barriers to Ku accumulation in chromatin

Repair of DNA double strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Given its high affinity for ends, multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ~1-2 molecules per DNA end. The mechanisms en...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Bossaert, Madeleine, Moreno, Andrew, Peixoto, Antonio, Pillaire, Marie-Jeanne, Chanut, Pauline, Frit, Philippe, Calsou, Patrick, Loparo, Joseph John, Britton, Sébastien
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 04.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Repair of DNA double strand breaks by the non-homologous end-joining pathway is initiated by the binding of Ku to DNA ends. Given its high affinity for ends, multiple Ku proteins load onto linear DNAs in vitro. However, in cells, Ku loading is limited to ~1-2 molecules per DNA end. The mechanisms enforcing this limit are currently unknown. Here we show that the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs), but not its protein kinase activity, is required to prevent excessive Ku entry into chromatin. Ku accumulation is further restricted by two mechanisms: a neddylation/FBXL12-dependent process which actively removes loaded Ku molecules throughout the cell cycle and a CtIP/ATM-dependent mechanism which operates in S-phase. Finally, we demonstrate that the misregulation of Ku loading leads to impaired transcription in the vicinity of DNA ends. Together our data shed light on the multiple layers of coordinated mechanisms operating to prevent Ku from invading chromatin and interfering with other DNA transactions.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Working Paper/Pre-Print-1
content type line 23
ISSN:2692-8205
2692-8205
DOI:10.1101/2024.01.03.574002