Kinship Verification using Mixed Descriptors and Multi Block Face Representation

Kinship verification is a challenging problem that recently attracted much interest in computer vision, this system has a number of applications such as organizing large collections of images and recognizing resemblances among humans and search for lost people. In this work, we propose a new method...

Full description

Saved in:
Bibliographic Details
Published in2019 International Conference on Networking and Advanced Systems (ICNAS) pp. 1 - 6
Main Authors Chergui, Abdelhakim, Ouchtati, Salim, Mavromatis, Sebastien, Eddine Bekhouche, Salah, Sequeira, Jean, Zerrari, Houssem
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Kinship verification is a challenging problem that recently attracted much interest in computer vision, this system has a number of applications such as organizing large collections of images and recognizing resemblances among humans and search for lost people. In this work, we propose a new method based on different descriptors mixed such as (LBP, LPQ, BSIF), and the Multi-Block (MB) representation. and we investigate the effect of different features representation for kinship verification, Moreover, the use of TTest to reduce the number of features and the support vector machine (SVM) for the kinship classification. Our approach consists of five stages : (1) features extraction , (2) face representation (3) features representation, (4) features selection and (5) classification. Our approach is tested on five datasets (Cornell, UB Kin Face, Familly 101, KinFac W-I and W-II). Our results are good comparable with other approaches.
DOI:10.1109/ICNAS.2019.8807875